Micropatterned substrates to promote and dissect reprogramming of human somatic cells
نویسندگان
چکیده
Reprogramming of human somatic cells to induce pluripotent stem cells (iPSCs) generates valuable precursors for disease modeling and regenerative medicine. However, the reprogramming process can be inefficient and noisy, creating many partially reprogrammed cells in addition to fully reprogrammed iPSCs. To address these shortcomings, we developed a micropatterned substrate that allows for dynamic live-cell microscopy of thousands of cell subpopulations undergoing reprogramming. Micropatterning facilitated a change in shape, size and clustering of nuclei to promote somatic identity erasure. Increased proliferation, cell density and decreased intercellular YAP signaling accompanied these nuclear changes. A combination of eight nuclear characteristics could be used to track reprogramming progression and distinguish partially reprogrammed cells from those that were fully reprogrammed. Micropatterned substrates constitute a new tool for facile iPSC production and can be used in high-throughput to probe and understand the subcellular changes that accompany human cell fate transitions.
منابع مشابه
Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملI-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline
Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...
متن کاملNanofibrous Electrospun Polymers for Reprogramming Human Cells
Forced expression of transcription factors epigenetically reprograms somatic cells harvested from routine skin biopsies into induced pluripotent stem cells (iPSCs). Human iPSCs are key resources for drug discovery, regenerative medicine and tissue engineering. Here we developed a materials approach to explore how culture substrates could impact factor-mediated reprogramming of human fibroblasts...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کامل